

Paper ID: 314

Title: A Comparative Study of Deep Learning-based Depth Estimation Approaches: Application to Smart Mobility

Name of Authors: Antoine Mauri - Redouane Khemmar - Benoit Decoux - Tahar Benmoumen - Madjid Haddad - Rémi Boutteau

Presented By: Redouane Khemmar Affiliation: Normandie Univ, UNIROUEN, ESIGELEC, IRSEEM

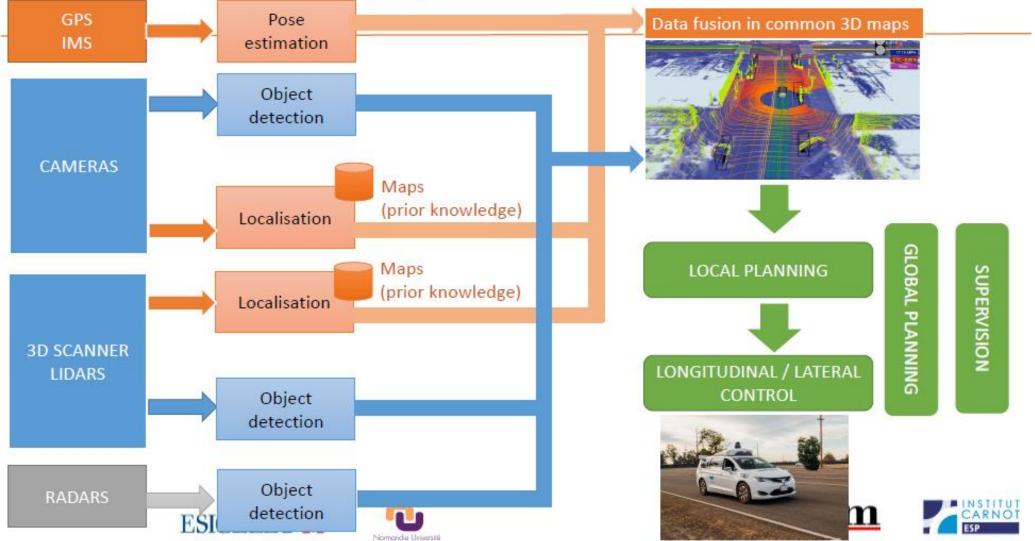
Outline

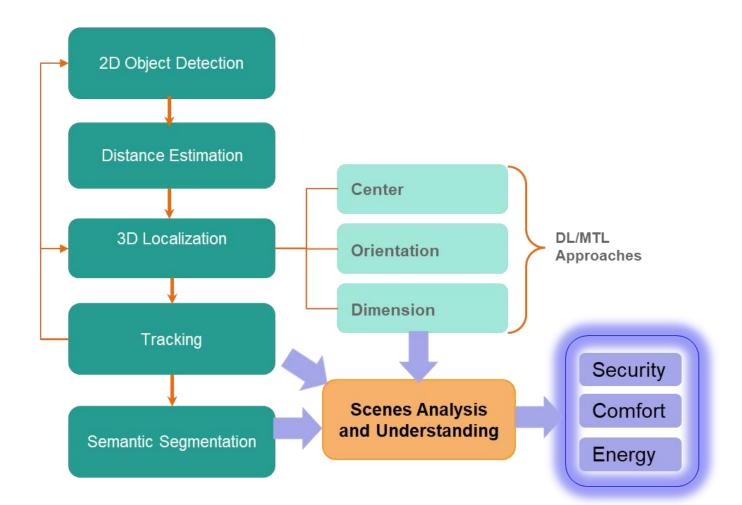
- I. Context & Motivation
- II. Related Work
- III. Evaluated Depth Estimation Methods
- IV. Our New Evaluation Protocols
- V. Experimental Results
- VI. Conclusion and Future Work

- Perception of environment is an important aspect for Autonomous Vehicles (AV)
 - Localization of potential obstacles is crucial to prevent collisions for AV
 - Object detection, localization, and tracking are important for scene analysis and understanding
- CNN based Depth Estimation Methods allow to use Images from a Monocular or Stereoscopic Camera to get a Dense Depth Prediction
 - Expensive depth sensors like LiDAR could be replaced by a single camera

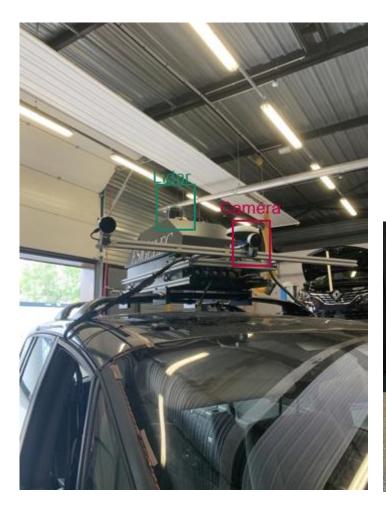
Few works has been done to compare the performances under realistic environment

AUTONOMOUS DRIVING (AD) SYSTEM



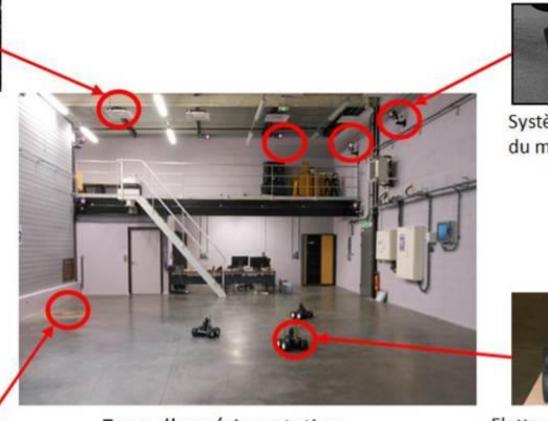


Autonomous Vehicle: Acquisition System



Autonomous Vehicle: Autonomous Navigation Laboratory

Eclairage contrôlé (tests en luminosité dégradée)



Système de capture 3D du mouvement VICON

Zone « pluie » ; test en conditions d'environnement dégradé

Zone d'expérimentation

Flotte de robots indoor (wifibots)

Related Work : Depth Evaluation Metrics

- Depth error metrics used in our study:
 - Relative Error :
 - Squared Relative Error :
 - Root Mean Squared Error :

$$RE = \frac{1}{N} \sum_{i} \sum_{j} \frac{|g_{i,j} - p_{i,j}|}{g_{i,j}}$$
$$SRE = \frac{1}{N} \sum_{i} \sum_{j} \frac{|g_{i,j} - p_{i,j}|^{2}}{g_{i,j}}$$
$$RMSE = \sqrt{\frac{1}{N} \sum_{i} \sum_{j} (g_{i,j} - p_{i,j})^{2}}$$

• Logarithmic Root Mean Squared Error : $logRMSE = \sqrt{\frac{1}{N}\sum_{i}\sum_{j}(log(g_{i,j}) - log(p_{i,j}))^2}$

p: depth prediction of a pixel in the imageg: depth ground truth of a pixel in the imageN: total of pixels in the image

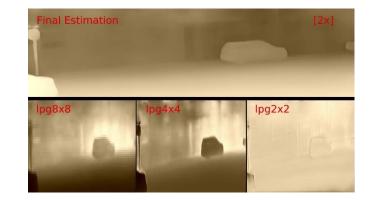
Evaluated Single Image Depth Estimation Methods

BTS¹ (Big To Small)

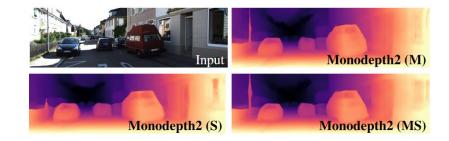
- **Supervised** monocular depth estimation
- Layers located at multiple stages of the decoding phase are used
- Their outputs are combined to **predict depth at full resolution**
- Achieves top precision on KITTI depth benchmark

Monodepth2²

- Can be trained with or without depth supervision
- With self-supervision, the problem of depth estimation is casted into an image reconstruction one
- Self-supervision works with:
 - Monocular image sequences (M)
 - Stereo data (S)
 - Or both of them (MS)



BTS Approach



Monodepth2 Approach

J. H. Lee, M.-K. Han, D. W. Ko, and I. H. Suh, "From big to small: Multi-scale local planar guidance for monocular depth estimation," arXiv preprint arXiv:1907.10326, 2019.
C. Godard, O. Mac Aodha, M. Firman, and G. Brostow, "Digging into self-supervised monocular depth estimation," arXiv preprint arXiv:1806.01260, 2018.

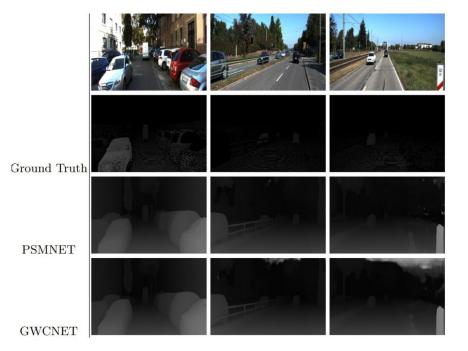
Evaluated Stereoscopic Image Depth Eestimation Methods

PSMNet¹

- Supervised stereoscopic depth estimation
- Use **Spatial Pyramid Pooling** to expand the receptive field
- Global contextual informations are extracted by a stacked hourglass 3D CNN

GwcNet²

- Supervised stereoscopic depth estimation
- Group wise correlation are used for providing matching features
- Improved stacked hourglass network



PSMNET and GWCNET

1. PSMNET: Pyramid Stereo Matching Network.

 J.-R. Chang and Y.-S. Chen, "Pyramid stereo matching network," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5418, 2018.
X. Guo, K. Yang, W. Yang, X. Wang, and H. Li, "Group-wise correlation stereo network," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3273–3282, 2019.

^{2.} GWCNet: Group-wise Correlation Stereo Network

Experimental Results

Dataset : KITTI¹

- Highly used dataset for road environment with real world traffic
- Data are calibrated and synchronized and come from multiple sensors : Stereo camera, Velodyne Lidar, GPS/IMU navigation system
- Used as benchmark for depth estimation, optical flow, and object detection tasks

Results

	RelErr	SqRel	RMSE	logRMSE
Monodepth2	0.115	0.882	4.701	0.190
BTS	0.060	0.249	2.798	0.096

Results of single image-based methods

	RelErr	SqRel	RMSE	logRMSE
GWCNET	0.018	0.048	0.981	0.042
PSMNET	0.032	0.061	1.139	0.056

Results of stereoscopic-based methods

1. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The kitti dataset," The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.

Experimental Results

Input data of our Object Distance Evaluation Protocol:

- Input image fed to the depth prediction algorithm
- Disparity map
- Normalized depth map after median scaling
- Object masks from Mask-RCNN

Experimental Results under KITTI dataset

Monocular Depth Estimation Methods Evaluation: Monotdepth2 vs BTS:

Depth errors for distance rangers of 10m and up to 80m

	RE		SRE		RMSE		logRMSE		a_1		a ₂		as	
Distance ranges	MD2	BTS	MD2	BTS	MD2	BTS	MD2	BTS	MD2	BTS	MD2	BTS	MD2	BTS
0 - 80m	0.115	0.060	0.882	0.249	4.701	2.798	0.190	0.096	0.879	0.955	0.961	0.993	0.982	0.998
0 - 10m	0.102	0.071	0.503	0.188	1.489	0.991	0.141	0.106	0.929	0.959	0.979	0.988	0.99	0.994
10 - 20m	0.116	0.088	0.845	0.395	3.035	2.198	0.18	0.149	0.891	0.924	0.96	0.971	0.979	0.985
20 - 30m	0.168	0.13	1.866	1.055	6.208	4.745	0.261	0.229	0.773	0.836	0.916	0.934	0.957	0.964
30 - 40m	0.196	0.16	2.788	1.945	9.11	7.476	0.307	0.279	0.694	0.764	0.886	0.906	0.942	0.947
40 - 50m	0.209	0.174	3.504	2.64	11.682	10.008	0.318	0.298	0.641	0.725	0.865	0.889	0.943	0.941
50 - 60m	0.221	0.19	4.394	3.739	14.252	12.852	0.332	0.326	0.583	0.675	0.857	0.868	0.927	0.922
60 - 70m	0.212	0.201	4.657	4.584	15.855	15.585	0.325	0.334	0.609	0.619	0.854	0.856	0.93	0.923
70 - 80m	0.181	0.214	4.34	5.454	15.8	18.219	0.284	0.333	0.652	0.548	0.873	0.843	0.945	0.925

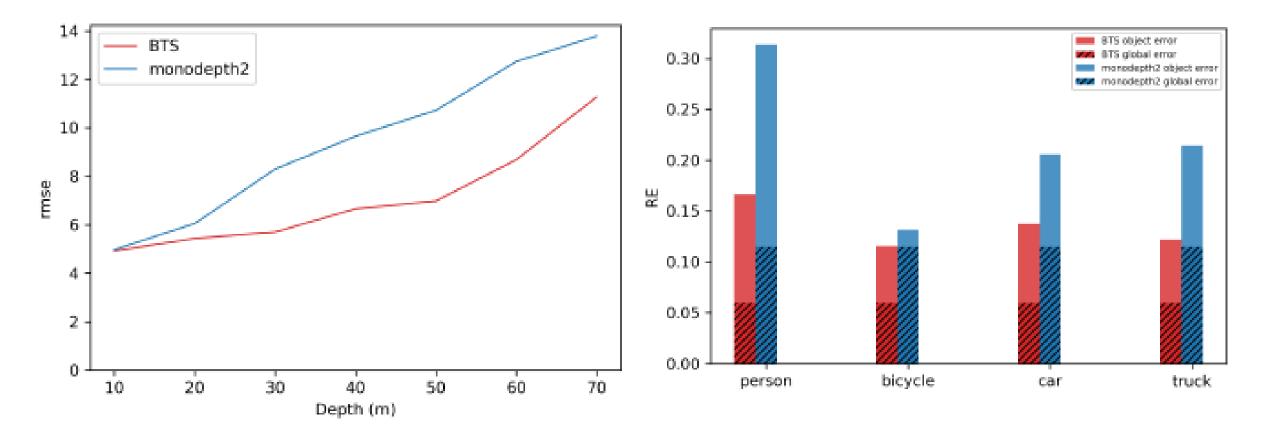
Experimental Results Under KITTI dataset

- Monocular Depth Estimation Methods Evaluation: Monotdepth2 (MD2) vs BTS:
 - Depth errors computed for the object classes with enough instance in test split distance rangers of 10m and up to 80m

	RE		SRE		RMSE		logRMSE		<i>a</i> ₁		a_2		a 3	
Object class	MD2	BTS	MD2	BTS	MD2	BTS	MD2	BTS	MD2	BTS	MD2	BTS	MD2	BTS
Person	0.314	0.166	5.721	1.786	8.43	5.892	0.326	0.253	0.601	0.772	0.829	0.894	0.92	0.947
Bicycle	0.131	0.116	0.517	0.467	2.81	2.669	0.172	0.163	0.829	0.839	0.964	0.962	0.993	0.994
Car	0.206	0.137	3.132	1.491	7.924	6.052	0.271	0.223	0.773	0.838	0.883	0.922	0.938	0.955
Truck	0.215	0.122	2.769	0.826	6.978	4.523	0.259	0.177	0.694	0.854	0.903	0.969	0.964	0.985

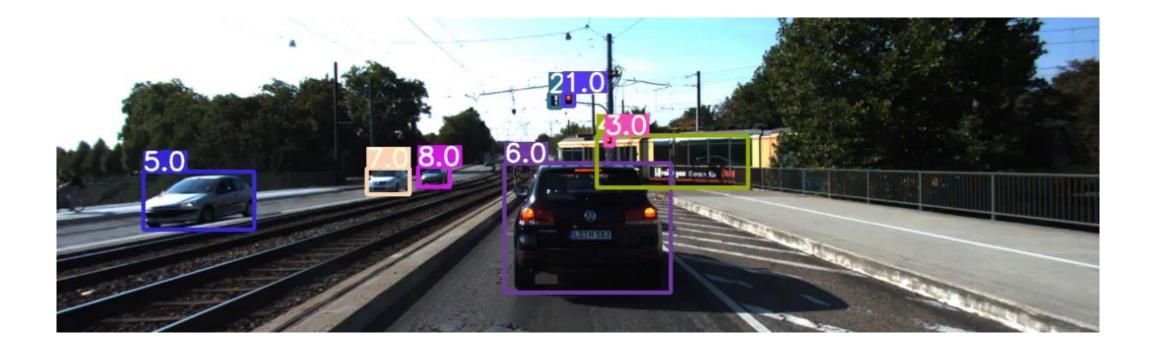
Experimental Results under KITTI dataset

Quantitative RMSE and RE Results for the car object class over distance ranges on the KITTI dataset.



Experimental results

Object Detection



Experimental results

Distance Estimation of in Traffic Environment under KITTI

Experimental results

Depth Estimation Evaluation Methods: Evaluation

Conclusion and Future Work

In this work we presented

- An evaluation of State-of-The-Art for both:
 - Stereo and Mono depth estimation methods
- Our work also showed that
 - BTS is more accurate than Monodepth2
 - GWCnet outperforms PSMNet
 - Stereoscopic methods have a greater accuracy than monocular-based methods
- Future work
 - Evaluate depth estimation algorithms on Rail Environment
 - Acquire our own Railway Dataset